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Evolution of the trans-Alfvknic normal shock in a 
gas of finite electrical conductivity 

By L. TODD 
Department of Applied Mathematics and Theoretical Physics, University of Cambridgo 

(Reccivrtl 36 June 19G3) 

The stability of a steady, plane, one-dimensional trans-Alfv6nic shock to small 
transverse disturbances in the velocity and magnetic field is discussed. I n  the 
undisturbed flow the magnetic field and velocity are normal to the plane of the 
shock which is treated as a discontinuity in an inviscid gas of zero thermal 
conductivity. However, the electrical conductivity of the ambient gas is taken 
to be finite, i.e. the magnetic diffusivity is very much larger than both the viscous 
diffusivity and the thermal diffusivity. 

A small uniform transverse perturbation of the magnetic field is imposed a t  
zero time. A specific super-Alfvhic normal shock is chosen. Computed values of 
the magnetic field, in and near the shock, are given for various later times. Two 
diffusing Alfv6n waves of the amplitudes predicted by infinite conductivity 
theory are shown to propagate away from the shock region, leaving behind the 
expected steady-state shock profile. 

Similar computations are carried out for a specific trans-Alfv6nic normal 
shock. An analytic asymptotic solution, valid for large times, is also obtained. 
This result agrees with the computations carried out. The shock profile of the 
transverse quantities is one which grows linearly with time. Outside this magneto- 
hydrodynamic shock region which surrounds the trans-Alfv6nic hydrodynamic 
shock (discontinuity), steady states are reached in each of which the transverse 
velocity and transverse magnetic field are uniform. An incident Alfven wave, 
consisting of a weak diffusing current sheet, produces these same effects. The 
resolution of an arbitrary transverse fluctuation, in which both the magnetic 
field and the velocity have limiting values at large distances from the shock, 
is discussed. The solution for large times is found. 

It is shown that the trans-Alfv6nic normal shock and its two limiting cases, 
the null switch-on and null switch-off shocks, are unstable to general transverse 
disturbances although there exist particular disturbances of this kind which will 
not destroy them. An integral condition is obtained which, together wi th  the 
relevant boundary conditions, determines the profiles of the transverse quan- 
tities in the trans-Alfvhic normal shock whenever a steady state is reached. 
This removes the puzzling arbitrariness of these profiles. 

1. Introduction 
A great deal of work has been done in recent years on the stability of steady, 

plane, one-dimensional magnetohydrodynamic shocks. These shocks were 
treated as discontinuities in a perfect fluid. Before we proceed with a brief 
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discussion of this work, it is expedient to introduce some of the terminology which 
will be used. 

A Cartesian set of axes, Oxyz, is employed. The x-axis points downstream, in 
the direction of variation. This is normal to the plane of the shock and is also 
referred to as the longitudinal direction. Contact surfaces and tangential 
discontinuities (Landau & Lifshitz 1960) are not considered as shocks. Except 
in the case of the Alfv6n-t shock, Oyx can be chosen (e.g. Shercliff 1960b) moving in 
the shock, such that the z-components of the magnetic field and velocity are 
zero. (A more precise statement is that the z-component of the magnetic field, Bn, 
is zero outside the shock region. In spite of this restriction, there are certain mag- 
netohydrodynamic shocks within which B, can take small, but non-zero, values, 
i.e. have a shock profile. This statement will be amplified later.) A magneto- 
hydrodynamic shock is termed transverse, oblique or normal, according as 
the undisturbed magnetic field (Bz, B,, 0) relative to this system of axes, is 
parallel to, inclined to, or normal to the plane of the shock. The Alfvh shock, 
to which the last statement does not apply, involves only an arbitrary 
rotation of the transverse magnetic field and velocity. It is stable (Syrovatskii 
1953) and is omitted except in so far as it is a limiting case of other types of 
shock. 

The longitudinal Alfven velocity is the velocity with which small transverse 
disturbances in the z-direction are propagated, relative to the fluid. The Alfven 
number m is the ratio of the normal velocity ‘ZG to the longitudinal Alfven velocity. 
The upstream region is referred to as region 1 and all quantities evaluated 
there are given the suffix 1, and similarly for the downstream region, region 2. 
Since magnetohydrodynamic shocks are never expansive (Iordanskii 1958; 
Shercliff 1 9 6 0 ~ )  m, is never less than m2. In  this paper an oblique or normal 
shock is termed super-Alfvenic, trans-Alfvdnic or sub-Alfv6nic accordingly as 
m2 > 1,  m, > 1 > m2 or 1 > m,. Under this classification the so-called fast 
oblique shocks (see, for example, Shercliff 1960b) are super-Alfvenic and the 
so-called slow oblique shocks are sub-Alfvdnic. The intermediate oblique 
shocks are trans-Alfvhic. A shock is called a switch-on shock if m, > m2 = 1 
and (B,), = O +  (Bv)2. If = 0, we shall call it a null switch-on shock. 
A switch-off shock has m, = 1 > m2 and (BV), + 0 = If (BV)l = 0, we 
shall label it a null switch-off shock. 

In  all the papers mentioned in the following paragraph, shocks are treated as 
discontinuities and the direction of variation of the one-dimensional disturbances 
is normal to the plane of the shock. Also, since the gas is treated as having negli- 
gible electrical resistance the general perturbation field is composed of the 
14 possible plane waves. The authors declare a shock to be stable if, and only if, 
satisfaction of the boundary conditions at the shock uniquely determines the 
amplitudes of the outgoing waves in terms of the amplitudes of the incoming 
waves. If these amplitudes are not uniquely determined, then the shock can 
emit waves spontaneously, implying instability. For some shocks, the boundary 
conditions overdetermine the amplitudes and there is no solution at all. The 
trans-Alfv6nic shock is in this category. The effects of electrical resistance 
must be considered, and this is one of the objects of the present paper. 

t This ‘shock’ is in fact a simple wave. 
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Akhiezer, Liubarskii & Polovin (1958) showed that transverse shocks are 
stable. Syrovatskii (1959) proved that all trans-Alfvknic shocks are unstable to 
small perturbations in the z-direction and that super-Alfvhic and sub-Alfvhic 
shocks are stable to such disturbances. Akhiezer et al. also found that fast oblique 
and slow oblique shocks are stable to a general small disturbance but that inter- 
mediate oblique shocks are not. They showed that some species of these inter- 
mediate oblique shocks have instabilities in addition to the one found by Syro- 
vatskii. Lastly, they proved that a normal shock is unstable only if it  is trans- 
Alfvhic, null switch-on or null switch-off. Such shocks were found to be unstable 
to transverse disturbances. Syrovatskii (1959) and Polovin (1961) pointed out 
that the trans-Alfvknic normal shock can be replaced by a switch-on shock 
followed, at an indeterminate distance downstream, by a switch-off shock. 
Indeed a rotational AlfvBn wave could be superimposed in between these two 
shocks. However, diffusion prevents this latter wave existing in a steady state 
and, as Syrovatskii pointed out, both the switch-on and switch-off shocks are 
unstable. Thus no headway is made by proposing these models. 

Anderson (1963) has summarized the work of Kontorovich (1959) who showed 
that the conclusions obtained on stability with respect to normal small distur- 
bances hold for arbitrary small disturbances. Indeed Kontorovich found that 
one of the species of intermediate shocks is unstable to normal disturbances only. 
Hence normal disturbances are the most severe ones. 

This discussion of previous work indicates the desirability of classifying 
shocks as super-, trans- or sub-Alfvknic, as has been done. It is worth mentioning 
a t  this point that v, and B,, subject to their remaining small, can have an arbitrary 
shock profile in all steady, trans-Alfvknic shocks. 

This paper discusses the stability of the trans-Alfvknic normal shock to small, 
normal disturbances. The initial value problem is discussed when the electrical 
conductivity of the ambient gas is finite and is a scalar quantity in each of the flow 
regions, i.e. the flow is collision dominated and the electron inertia term, as well 
as the electron pressure gradient term, is neglected compared to the retained 
terms in the generalized Ohm’s Law. Thus in contrast to previous works there is 
now a natural length scale available, namely the magnetohydrodynamic shock 
thickness. This is an entirely realistic situation. Moreover, for this problem 
continuum theory is valid. 

2. Equations and boundary conditions 

The magnetohydrodynamic equations governing the one-dimensional, unsteady 
motion of an inviscid, electrically conducting, compressible fluid of zero thermal 
conductivity are (in M.K.S. units) 

2.1. Full equations and boundary conditions 

21-2 
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P a p  P aP ( ( a B y + @ ) 2 } ,  (3) 
as as ae 

# 0 0 - + p O K - = p - + p & - - - - - - & -  = p h  - 
at ax at ax p at p az ax 

Bx = const., (4) 

The notation is standard, h being the magnetic diffusivity and ,u the permeability 
of the fluid. The entropy per unit mass s, internal energy e and absolute tem- 
perature 0 are known functions of p and p. Hence only two of 0,  e ,  p ,  p and s are 
independent. A consequence of equation (4) is that m2, = ZnlE where Z = p2/p1 
is the shock density ratio. The current j and electric field E are given in terms of 
B and v by the equations . 1 .  iiB 

/c ox 
J = - l h , ,  

E = hpj-vhB ( 8 )  

where i is a unit vector parallel to Ox. 
The full, non-linearized, boundary conditions satisfied a t  a steady, plane, one- 

dimensional, shock propagating through the fluid are given below. [ A ]  denotes 
the change in A across the shock. 

[ p + p V ~ + ( B : + B ~ ) / 2 p ~ ]  = 0, (9) 

[PKl = 0, (10) 
( 1 1 )  [ e  + p i p  + (E A B),/ppT; + &( Vz + 1': + Vf)] = 0, 

( 1 2 )  

( 1 3 )  

[H,] = 0. (11) 

Equations ( 1 )  to (6). with the appropriate suffix, govern the flow in each of the 
regions separated by the shock. The boundary conditions (9) to (13) have not 
been simplified in the obvious manner because (14) does not necessarily hold 
whenh = 0. 

2.2.  Linearized equations 

Let us now use these equations to discuss the stability of such a shock to small 
perturbations in the quantities concerned. It is supposed that in the unperturbed 
system the density, pressure and longitudinal velocity are constant in each region, 
B = B = 0 ,  j, = j, = 0 and Kl  = 

As was pointed out by Akhiezer et al., albeit for the case h = 0, the relevant 
linearized equations and boundary conditions split up into three separate sets. 
The first set involves the changes in pressure, density, longitudinal velocity 
relative to the stationary axes, and the velocity of the shock front. This is the 
well known stability problem relevant to the case of the shock propagating 

= 0 ( q  = y,z). P i  Pa 
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through a non-conducting gas. Hence we need concern ourselves no further 
with it. The shock is stable to such perturbations if M, > 1 and M, < 1, inequali- 
ties that are always satisfied. 

The other two sets are of identical form for q = y,z, and need no separate 
discussion. They are a~ aBq, azBi a?. 

>+u.--"-h.--B = 0 (15) at a ax a x 2  x ax 

where the suffix i = 1,s is used to label conditions upstream and downstream 
of the shock, and the boundary conditions (12), (13) and (14). In  (15) and (16), 
u is the velocity perpendicular to the shock in the undisturbed flow, and p and h 
have their undisturbed values. The suffix q will be retained and can be read as 
representing either y or 2. Terms of second order in the perturbed quantities have 
been everywhere neglected. 

Akhiezer et al. discussed the resolution of small disturbances in B, and v, but 
set h = 0. In  this case, equations (15) and (16) yield the well-known Alfvh wave 
equation. The boundary conditions obeyed were taken as (12) (with h = 0) and 
(13). It is important for the reader to realize that this last statement requires 
that the integral of p(a&/at) and of aB,/at, over a box-type control volume of 
dimensions (6, 1, l), surrounding unit area of the shock, should become negligible 
compared to the retained terms, as 6 tends to the width of the magneto- 
hydrodynamic shock. (It is shown later that this is not always true.) 

If rn: > Z or m2, < 1, there are two Alfv6n waves travelling outward from the 
shock and the two boundary conditions determine these uniquely in terms of 
the two incoming Alfvkn waves. If, however, Z > ml > 1, only one of the four 
waves is outward travelling and it is impossible in general to satisfy the boundary 
conditions. I n  this paper, these problems will be tackled with h not set equal to 
zero. 

3.3. Linearized equations and boundary conditions in 
non-dimensional form 

Let us define the following non-dimensional quantities: 
bi = BJB,, tyi = JLt/ui, X i  = u i X / h i ,  Ti = u;t/hi, Q1 = T2/Tl = Q ,  Q2 = 1 .  

The suffices will be omitted from the S ' s  as it is always obvious which is appro- 
priate. T, will simply be written as T. Equations (12) to (16) may now be re- 
written as follows: 

ah, a 
m; Qi-+- v i =  0. 

-- ax ( aT A) 
The boundary conditions require that, at S = 0, 

b, = b,, 
zv, = v2, 

and 
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2.4. Steady state 
It is desirable at this stage to use the steady-state equations to discuss the 
variation of b,  u through the magnetohydrodynamic shock when it has end 
states connected by the boundary conditions (12) and (13) with h = 0. 

We obtain 

(a )  Z < nt:, i.e. super-Alfue'nic normal shock 

In this case the solutions are 

and u, and b ,  are constant, i.e. u, = ( u , ) + ~  and b ,  = (b,)+m. 

( b )  m2, < 1. 
In  this case, b, and u1 are constant, and 

( c )  2 > m; > 1 
This is by far the most interesting case. The solutions are of the form 

b, = (b1)-, + A  exp (1 - mi2)  S, 
u1 = ( u ~ ) - ~  + exp (1 - m i 2 )  X, 
[m2,(2 - 1) + (2- m2,) A ]  exp ( - ~ -.-p (2 - - m:) __ S b, = (b2)+ ,: - ----___ 

(m; - 2)  m: 

(23) 

(23) 

(24) 

(25) 

(26) 

( 1 7 )  

(28) 
(29) 

(30) 

(31) 

These results satisfy the differential equations and the boundary conditions for 
any numerical constant A ,  Hence apparently all trans-Alfv6nic normal shocks 
have indeterminate structure. We shall see later that, when in fact a steady state 
exists, A is determined from previous events by an integral expression. 

3. The initial value problem 
Let us now study the following Cauchy-type problem. Given that, at T = 0, 

b = b(x,  0 ) ,  u = u(x, 0 ) ,  what is the history of the subsequent changes in b and u? 
I n  terms of the Laplace transforms 

ti = Im bie-""dT and vi = 
0 
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where s = 4 + i@ and q5 > 0 ,  equations (17) and (18) become 
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d2 d 
d X 2  d X  

d t i  =-m: (&+Qis),yi = -m:Qivi(X,O). 

(32) 

(33) 

3 

p = 1  
Hence ti = Ai, exp (pi, X> + (particular integral), 

where the pi, are the roots of 
p 3  + (mi2- 1 + Qis)  /32- 2Qisp- Q;s2 = 0. (34) 

The A ,  are constants depending on the p's, Q, ml, 2 and s. It can be shown that 
one root of this cubic has a positive real part and that two roots have a negative 
real part, for all values of m:, Qi and s, provided that Re(s) > 0. Thus the con- 
dition that ti remains finite as 1x1 -+ co rules out three of the arbitrary constants. 
As we have three boundary conditions to satisfy, the problem is solvable for all 
mi, 2 and Q. These boundary conditions are obtained from equations (19) to (21). 
They are that, a t  

X = O ,  t1= f2 ,  Z q ~ ~ = r ~  and ( Z - l ) < =  ( :: 2). 
3.1. The super-Alfvdnic case, i.e. m2, > 2 

The initial disturbance is b ( r ,  0 )  = A (const.) and v(x, 0 )  = 0, all X. The asymp- 
totic forms of the solutions, as T + co, can be predicted by contour integration 
methods (Appendix 1).  As one expects, they are given by equations (24) and 
(25) with (bl)-m = A and ( v ~ ) - ~  = 0. The value of b in, and near, the resultant 
shock layer was calculated, with the aid of a computer, for various non-large 
values of T. I n  this work, 2 = 1.5, rn: = 6 and Q = 1.1335. The value of Q used is 
appropriate to a shock, density ratio 1.5, propagating through a perfect, mon- 
atomic, fully ionized gas. The profiles obtained are shown in figure 1. Two 
diffusing Alfvhn waves of the strength predicted by infinite conductivity theory 
(Akhiezer et al.) can be seen emerging and propagating away from the shock. 
Behind them lies the asymptotic steady-state profile. 

3.2. An asymptotic solution for the trans-Alfvdnic case 
(2 > rn: > 1)  

I n  this section an asymptotic solution, applicable for large T, is obtained for 
a slightly more general initial disturbance. 

b,@, 0) = fi, b,(Z, 0) = f 2 ,  V l ( 2 ,  0) = 91 and vz(2, 0) = 92 

where f , ,  f 2 ,  g ,  and ga are numerical constants. 
There is a pole of order 2 a t  s = 0 in the integrand of the integral expression 

for b. If the shock had been super-Alfvhnic, as in 5 3.2, or sub-Alfvhnic, therewould 
have been a pole of order 1 a t  s = 0. This corresponds to the fact that there is now 
a natural singularity in the equations, i.e. there exist non-zero solutions to equa- 
tions (32) and (33) when s = b(x, 0) = v(z,O) = 0. This is the source of the 
indeterminacy in the steady-state shock profile discussed in 9 2.4. 
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9 

FIGURE 1 .  The relative increase in transverse magnetic field near 
the super-.Mfvbnic normal shock. 

and $ = R e s ;  

Pll is that root of equation (34) which has a positive real part (i = 2 ) :  

/Iz2 a i d  PZ3 are those roots which have a negative real part ( i  = 2 ) .  

A s s +  0, 

where A arid B are defined by equations (35 )  to (39). Hence the contributioi, $0 
the integral from the pole a t  s = 0 is 

(-4 +{(wz:+ l)/(m;-- l))B&X+RT)exp{(nz2,- l)X/rn!}. 

The path of integration has been closed to the left (Res < 0) along the infinite 
semi-circle in the s-plane. If i t  can be shownt that all other contributioiis tend to 
zero as T + 00, the above expression gives the asymptotic form of 6,. 

The full expressioiis for A and B are 

B = K z l [ (  2 - l)f1+ { (z - m:)/m:(~bz + 1 )} {nl z(f2 -fi) - g(ZS1- SJSI 7 ( 3 5 )  

A = K,1[K3B+K,], (36) 

See Appendix 1. 
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By a similar procedure we find that, as T -+ 00, 

C is the strength of the only Alfvh wave (a right travelling one) that the shock 
can emit 

(41) 

It is worth while noting that an easier way to find B and C is to try solutions 
of the type 

b, = (f1+G,(X)+BT)exp((m2,- l ) S / m f ) ,  
b, = f 2  + C + ( G 2 ( S )  + BT)  exp { - (2 - m:) Sjm?). 

Gl, Gr', are found to be of the same type as before and the values of B and C 
obtained are, of course, in agreement with the above values. However, the value 
of A could not be determined by this method. 

We shall refer to the above values of A ,  B and C, as 

A(f17 g l 7 f 2 , 9 2 ) ,  B(fl '  gl,.f2, 9 2 )  C(f1,gl,f2, 9 2 ) ,  

respectively. The solution for b, in this problem, we shall refer to as b(f,,  q,,f,, g2). 
A can be looked upon as the memory of the shock. 

3.3. Computations of an  in i t ia l  value problem in a trans-AIfv6nic case 

The initial disturbance is the same as in 8 3.2, i.e. g, = g2 = O;fl  = f 2  = A (const.) 
2 = 3, m: = 2 and Q = 1.  It was not expedient to set the value of Q in the man- 
ner discussed in 53.1. This was for computational reasons. The value of unity is, 
however, just as realistic. 

The computed profiles of ( b / A  - 1) are plotted, for various values of T ,  in 
figure 2. The variation of @/A) - 1, a t  x = 0, with T ,  is given in figure 3. The 
computed values of b / A  have an absolute error of less than for T < 80 and 
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less than 10-3exp +(T - 80) for larger times. The amplitude of the emergent 
Alfvbn wave and the values of A and 3 are in agreement with the results of 
4 3.3, which give 

C/f l  = 0.3414, A/fl  = 1.2513 and 3 / f l  = 0.15505. 

I l l 1  1 1 1 1  I I I 1 

18 - - 
16 - 
14 - - 

- 

2 12 - - 
Q 

I 10- 
co, 8 -  - 

6 -  - 
4 -  - 

T=8 - 2 -  
0 3 

- 

x 
FIGURE 2 .  The relative increaso in transverse magnetic field 

near the trans-Alfvknic normal shock. 

25 - Analytic 

p 2o - 
z 
2 15 - 

10 20 30 40 50 60 70 80 90 100 110 120 
T 

FIGURE 3. The variation of the relative increase of transverse magnetic field 
a t  the shock with t>ime. 

It is noticeable that the Alfvbn wave is formed much more quickly than the 
corresponding wave in 5 3.3, though the latter will eventually travel more 
quickly than it. As soon as the wave has been formed, i.e. ejected from the 
shock region, the shock profile is very near the theoretical asymptotic form. 

Some comparisons between the computed profiles and the relevant theoretica,l 
asymptotic ones are made below in table 1.  The figures in brackets correspond 
to the theoretical asymptotic profiles. 
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\, x' - 12 -8 - 4  - 2  0 

T '\, 
16 1.0004 1.0122 1,2461 1.9699 4.5579 

(0.9954) (1.0002) (1.2533) (2.0307) (4.7320) 
32 1.0035 1.0488 1.5827 2.9174 7.1457 

(1.0016) (1.0456) (1.5890) (2.9433) (7-2128) 
64 1.0141 1.1367 2.2582 4.7633 12.161 

(1.0139) (1.1365) (2.2605) (4.7686) (12.174) 

? \ s  1 Y 4 8 16 
\ 

T \  
16 2.8606 2.0262 1-4558 1.3369 1.3330 

(2.9277) (2.01 83) (1.3806) (1.2699) (1.3384) 
32 4.4078 2.9353 1.7472 1.3592 1.3390 

(4.4344) (2.9310) (1.7163) (1-3353) (1.3392) 
64 7.4362 4.7581 2.3955 1.4327 1.3413 

(7.441 7) (4.7562) (2.3878) (1.4263) (1.3409) 

TABLE 1. Some comparisons between the theoretical asymptotic profiles 
and the computed shock profiles of the relative transverse field 

4. The resolution of an arbitrary initial disturbance 
The results of $ 3  showed that the asymptotic shock profiles of b are indeed 

predicted by the analytical methodt used. It is assumed this is so for the problems 
discussed in this section. The shock is trans-Alfv6nic. 

4.1. Two more simple, initial-value problems 

a t  T = 0, 
(1) b, = A(const.), v, = &(const.), S + L  < 0 

b = v = O ,  X + L > O  

where L is any positive constant. The asymptotic solution? for b, is 

b, - bl(A,S,O,O)----- ZQ (A+m,S)Lexp(l-my2)9, 
K ,  

(42) 

a t  T = 0 ,  
( 2 )  b = v  = 0, X - N  < 0 

b,  = #(const.), v, = $(const.), X - N  > 0 

where N is a positive constant. In this case, as T + cot 
b, - b l ( o , o , # , ~ ) - h ' ~ - ' N ( # + m , $ ) e x p ( 1 - 7 n ~ 2 ) 5 .  (43) 

4.2. An arbitrary initial ~ i ~ t u r b a n ~ e  

If, at T = 0, b and v tend to limiting values as 1x1 + co in such a way that 

all exist, the results of the last section may be used to find the asymptotic solu- 
tion for b,. 

t Sce Appendix 1. 
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The change in A ,  the shock memory, due to the perturbation pictured in 
figure 4n is obviously given by 

- - L * -- 
SL 

+ * 

6A = 6L(-&) ( - g ( A + m . , G ) L  

7 

< N -  -- 
/ '+-  

SN * 

Similarly the change in A due to the initial state shown in figure 4 b is 

6A = 6AVliT~l(++n~,$). 

FIGCJRE 4. Initial disturbances of two possible types. 

Hence the asymptotic solution, for any initial disturbance of the stated type, 

(44) 
is 

where 
b l  = b l { P L >  ( ~ l ) - c 0 3  @2)+,7 (74+m}+A'eXP (1 -w2) x', 

Because this is a linear problem, the disturbance has been treated as one of 
finite extent, which provides the term in A', superimposed on one of the type 
discussed in $3.2.. If a steady state were reached inside the magnetohydro- 
dynamic shock, i.e. B{(bl)-m, ( w ~ ) - ~ ,  (b,),, ( v , ) ~ }  = 0, the value of A ,  A ,  (say), 
would be given by 

(46) 

This is the integral equation which resolves the anomaly mentioned in $2.3.  
It means that the steady-state shock structure can be fixed if the perturbed flow 
field a t  any previous time is known. 

Obviously a similar procedure could be carried out for a quite arbitrary 
initial state. For large T ,  the change in the memory of the shock could be reason- 
ably estimated by an integral expression similar to that of equation (46). The 
part of the disturbance which would have affected A ,  a t  any time, is that part 
which would have reached the shock via the diffusing Alfven waves. 

= A'+ A((bl)-m> (u1)-m,  (bz)+-m, ( ~ 2 ) + - m ) .  
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4.3. An interpretation of the results 

Equation (5) may be rewritten as follows: 

Let us define A = A, + A2 and x = x1 + x2, where 

It follows, with the aid of the boundary condition given by equation (12), that 

. 
dt --m 

Similarly from equation (16) and boundary condition (13) 

dt = [ 3 ? p - K ] + m .  -02 

Let us apply these results to the following two cases: 
(i) A disturbance of finite extent, i.e. b, and vq are identically zero far from 

the shock. In  this case A = const. and x = const. Hence both the flux of 
transverse magnetic field and of vQ are conserved. 

(ii) The disturbance considered in 9 3.3, i.e. bi(x, 0 )  = f i  and vi(x, 0) = gi, 
where fi and gi are constants (i = 1 ,3 ) .  For this problem 

A = B,(W1- S l )  - uz(f2 - S,)} t and x = {%(S1- m,"f,) - u2(92 - ZmT2fz)) t. 

Thus, in general, both fluxes grow linearly with time. These results are true 
whatever the values of m2,, Z and Q, and whether or not h is  zero. I n  an Alfv6n 
wave the fluxes of b, and tiQ are linearly connected and hence these two con- 
ditions cannot, in general, be satisfied simultaneously by one wave. Thus if the 
normal shock is super-Alfvhic or sub-Alfvhic these two conservation-type 
conditions determine the separate fluxes contained in the two outward travelling 
Alfvh waves. 

For the trans-Alfvthic normal shock there is, of course, only one outward 
travelling wave and a t  least one diffusivity must be taken into account. Let us 
take the magnetic diffusivity A, as the dominant one. We have now given the 
trans-Alfv6nic normal shock, but no other kind of normal shock,-j- the ability to 
store flux within itself and consequently the two conservation-type conditions 
can he satisfied simultaneously. The reader is reminded that if steady states exist 

t See $3.4. 
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immediately outside the shock region, the flux of b, and vq are linearly dependent, 
at any time, on one parameter.t Obviously the results of $4.2 can be obtained 
in the following way: (i) calculate the change in flux of v, and 6,  a t  the shock due 
to the disturbance pictured in figure 4a  in terms of the change in transverse 
magnetic field a t  the shock &A; (ii) add these to the relevant fluxes in the out- 
going wave and satisfy the two conservation conditions; (iii) repeat for the dis- 
turbance pictured in figure 4 b and proceed as before. 

Let us now consider what happens in t,he two limiting cases of the trans- 
AlfvBnic normal shock, i.e. the null switch-on and null switch-off shocks, if the 
initial disturbance is either of the types pictured in figure 4. The two conserva- 
tion conditions are still valid. A wave is propagated away from the shock and 
flux is left a t  the shock exactly as for the trans-Alfvknic normal shock. However, 
because convection and propagation are in exact balance on one side of the 
shock, diffusion has become the dominant physical process. If no further dis- 
turbances are incident, the flux a t  the shock will simply diffuse into the region in 
which m = 1.  An arbitrary initial disturbance will, in general, deposit flux a t  
either of these shocks a t  a greater rate than the rate a t  which it can be diffused 
away. Consequently both null switch-on and null switch-off shocks are unstable. 
However, the build-up of transverse magnetic field at the shock is not so rapid 
as for a trans-AlfvBnic normal shock. 

5. Conclusions 
The trans-AlfvBnic normal shock is unstable to transverse perturbations in 

the magnetic field and velocity. When a small packet of perturbed flow reaches 
and is propagated away from the shock region via the diffusing AlfvBn wave, the 
change in transverse field at the shock due to this packet is linearly dependent on 
both the flux of magnetic field and the flux of transverse velocity in the packet 
a t  the initial time. Hence there exist particular disturbances which do not break 
up the shock. If the shock encounters an Alfvkn wave in the form of a weak 
diffusing current sheet, the magnitude of the transverse field a t  the shock eventu- 
ally grows linearly with time, an unstable situation. It is the intention of the 
author to investigate the non-linear problem which arises in this case. If the 
initial small disturbances are such that a steady state is reached (unlikely in 
general), the shock profiles of the transverse quantities are fixed by introducing 
the addit,ional integral condition of equation (46). Thus the puzzling arbitrari- 
ness of the steady state shock profiles of V, and B, is resolved, q = (y, 2). 

An important conclusion of this work is that, in distinct contrast to classical 
theories, the unsteady processes which may be taking place within the trans- 
AlfvBnic magnetohydrodynamic shock cannot, in general, be neglected in the 
derivation of jump conditions across the shock. Hence, in general, neither the 
jump in transverse momentum plus Maxwell stress nor the change in the trans- 
verse components of the electric field is zero across the magnetohydrodynamic 
shock. 

Null switch-on and switch-off shocks are also unstable to the general perturba- 
tion field, though there exist disturbances which do not destroy them. Any 

t See 93.2. 
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transverse magnetic field or transverse velocity being built up at the shock will 
tend to diffuse into the region in which m = 1.  The only steady state possible at, 
or near one of these shocks has zero transverse magnetic field and zero transverse 
velocity . 

I am grateful to Dr J. A. Shercliff for the many stimulating discussions which 
we have had. This work was carried out while the author was a holder of a Re- 
search Studentship from the Department of Scientific and Industrial Research. 

Appendix 1 
All the theoretical asymptotic forms of b, mentioned in this paper were obtained 

by evaluating the residue of the integrand, in the integral expression for b,, 
at s = 0. The asymptotic form of b, is easily obtained from that of b,. In  general 

/ D  F 

B 

* 4  

A 

FIGURE 5 .  The closed path of integration in the complex s-plane. 

where eIJ is a quotient of two simple algebraic functions of the roots of (34) 

Branch cuts in the s-plane are necessary to make a root of equation (34) analytic. 
All the branch points are in the half-plane Re s < 0 for m: + 2 or 1.  These are 
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11, E, F, G, H and K. There is also a branch point a t  infinity. The contour I’ is 
therefore closed as shown in figure 5 .  It is relatively easy to show that, in the 
problems considered, 

e d s - t O  as R-too. 
I n r e d s  and I*,* 

s CD ... RL 
e d s - t O  as T+m.  Furthermore 

Thus, provided tha,t there exist no poles of the integrand in Re s 2 0 other than 
at s = 0, the asymptotic solution, as T --f co, is given by 2ni x (residue a t  s = 0). 
In the initial value problem considered in 55 3.1 and 3.3 

e = F(/j”s, mi, 898, s)/sG(P’s, mi, 2, Q ,  8) 

where F and G are of the stated type. F must always be finite or zero. The two 
sets of computations carried out lend evidence to the idea that G has no zeros 
in Res 2 0, other than a t  s = 0. This is a sufficient condition that the analytic 
work of 5 3 be valid and that an incident Alfv6n wave in the form of a diffusing 
current sheet will produce the same qualitative effects. The analytic work of 
$4 is also subject to there being no contributions from poles of the relevant 
integrand in Res 2 0, other than at s = 0. 

As m: + 1 (or Z ) ,  the points E (or G) --f 0 and consequently the nearer m: 
is to 1 (or Z )  the longer i t  takes for the asymptotic limit to be reached. 
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